當前位置:首頁 » 市場竅門 » 傅立葉分析股票波動

傅立葉分析股票波動

發布時間: 2022-07-01 06:37:30

A. 傅里葉有什麼作用

通過飛秒檢測發現傅立葉變換,表示能將滿足一定條件的某個函數表示成三角函數(正弦和/或餘弦函數)或者它們的積分的線性組合。在不同的研究領域,傅立葉變換具有多種不同的變體形式,如連續傅立葉變換和離散傅立葉變換。最初傅立葉分析是作為熱過程的解析分析的工具被提出的。

傅立葉變換是一種分析信號的方法,它可分析信號的成分,也可用這些成分合成信號。許多波形可作為信號的成分,比如正弦波、方波、鋸齒波等,傅立葉變換用正弦波作為信號的成分。

f(t)是t的周期函數,如果t滿足狄里赫萊條件:在一個以2T為周期內f(X)連續或只有有限個第一類間斷點,附f(x)單調或可劃分成有限個單調區間,則F(x)以2T為周期的傅里葉級數收斂,和函數S(x)也是以2T為周期的周期函數,且在這些間斷點上,函數是有限值;在一個周期內具有有限個極值點;絕對可積。則有下圖①式成立。稱為積分運算f(t)的傅立葉變換,

②式的積分運算叫做F(ω)的傅立葉逆變換。F(ω)叫做f(t)的像函數,f(t)叫做

F(ω)的像原函數。F(ω)是f(t)的像。f(t)是F(ω)原像。

形式),因此具有特徵的基函數就由三角函數變成復指數函數。但是,如果輸入是方波、三角波或者其他什麼波形,那輸出就不一定是什麼樣子了。所以,除了指數信號和正弦信號以外的其他波形都不是線性系統的特徵信號。

用正弦曲線來代替原來的曲線而不用方波或三角波或者其他什麼函數來表示的原因在於:正弦信號恰好是很多線性時不變系統的特徵向量。於是就有了傅里葉變換。對於更一般的線性時不變系統,復指數信號(表示耗散或衰減)是系統的「特徵向量」。於是就有了拉普拉斯變換。z變換也是同樣的道理,這時是離散系統的「特徵向量」。這里沒有區分特徵函數和特徵向量的概念,主要想表達二者的思想是相同的,只不過一個是有限維向量,一個是無限維函數。

傅里葉級數和傅里葉變換其實就是我們之前討論的特徵值與特徵向量的問題。分解信號的方法是無窮的,但分解信號的目的是為了更加簡單地處理原來的信號。這樣,用正餘弦來表示原信號會更加簡單,因為正餘弦擁有原信號所不具有的性質:正弦曲線保真度。且只有正弦曲線才擁有這樣的性質。

這也解釋了為什麼我們一碰到信號就想方設法的把它表示成正弦量或者復指數量的形式;為什麼方波或者三角波如此「簡單」,我們非要展開的如此「麻煩」;為什麼對於一個沒有什麼規律的「非周期」信號,我們都絞盡腦汁的用正弦量展開。就因為正弦量(或復指數)是特徵向量。

B. 如果只看單根K線圖來判斷價格趨勢可行嗎為什麼

只看單根K線圖來判斷價格趨勢可行,相同兩根k線的形成原因會不同,也就代表含義不一樣。
看股票K線是很常見的一種炒股手段。利用K線找「規律」也是炒股常用的方法,畢竟股市變化多端,以便更好的投資、獲得收益。
教大家如何來看K線,教夥伴們從哪裡入手去分析它。
分享之前,先免費送給大家幾個炒股神器,能幫你收集分析數據、估值、了解最新資訊等等,都是我常用的實用工具,建議收藏:炒股的九大神器免費領取(附分享碼)
一、 股票K線是什麼意思
K線圖還有許多其他的叫法,如蠟燭圖、日本線、陰陽線等,最常見的叫法是--K線,它的發明是為了更好的計算米價的漲跌,再後來,股票、期貨、期權等證券市場都開始使用它。
形似柱狀,可拆分為影線和實體,這個我們稱為k線。影線在實體上方的部分叫上影線,下方的部分叫下影線,實體分陽線和陰線。
Ps:影線代表的是當天交易的最高和最低價,實體表示的是當天的開盤價和收盤價。
其中陽線的表示方法有三種,分別是:紅色、白色柱體還有黑框空心,而且陰線實體柱是用黑色、綠色或者藍色來做代表的,

除此之外,正當我們看到「十字線」時,就可以認為是實體部分轉換成一條線
其實十字線很容易理解的,代表收盤價和開盤價一樣
認識了K線,我們對找出買賣點就會很在行(對股市方面雖然說是沒有辦法預測的,但是K線對於指導方面仍然是有作用的),對於新手來說,還是最容易操作的。
這里我要給大家提醒一下,K線解析起來是有一些復雜的,若是剛剛炒股的你還不了解K線,建議用一些輔助工具來幫你判斷一隻股票是否值得買。
比如說下面的診股鏈接,輸入你中意的股票代碼,就能自動幫你估值、分析大盤形勢等等,我剛開始炒股的時候就用這種方法來過渡,非常方便:【免費】測一測你的股票當前估值位置?
下面我就跟大家說說關於幾個K線分析的小竅門兒,幫助你加快入門的腳步。
二、怎麼用股票K線進行技術分析?
1、實體線為陰線
這時候要看股票成交量怎麼樣,萬一成交量不大,這就表示著股價可能會短期下降;而成交量很大的話,那股價很有可能要長期下跌了。
2、實體線為陽線
實體線為陽線就表示股價上漲空間更大,至於是不是長期上漲必須結合其他指標進行判斷。
比如說大盤形式、行業前景、估值等等因素/指標,但是由於篇幅問題,不能展開細講,大家可以點擊下方鏈接了解:新手小白必備的股市基礎知識大全

應答時間:2021-09-07,最新業務變化以文中鏈接內展示的數據為准,請點擊查看

C. 傅里葉變換法的優點

有些方程分離變數是很難的,傅里葉變換更容易

D. 什麼是傅立葉變換為什麼要進行傅立葉變換一些回憶

傅立葉變換表示能將滿足一定條件的某個函數表示成三角函數(正弦和/或餘弦函數)或者它們的積分的線性組合。

傅里葉變換可以將原來難以處理的時域信號轉換成了易於分析的頻域信號(信號的頻譜),可以利用一些工具對這些頻域信號進行處理、加工。最後還可以利用傅里葉反變換將這些頻域信號轉換成時域信號。

正是由於擁有良好的性質,傅里葉變換在物理學、數論、組合數學、信號處理、概率、統計、密碼學、聲學、光學等領域都有著廣泛的應用。

(4)傅立葉分析股票波動擴展閱讀:

在數學領域,盡管最初傅里葉分析是作為熱過程的解析分析的工具,但是其思想方法仍然具有典型的還原論和分析主義的特徵。

"任意"的函數通過一定的分解,都能夠表示為正弦函數的線性組合的形式,而正弦函數在物理上是被充分研究而相對簡單的函數類:

1、傅里葉變換是線性運算元,若賦予適當的范數,它還是酉運算元。

2、傅里葉變換的逆變換容易求出,而且形式與正變換非常類似。

3、正弦基函數是微分運算的本徵函數,從而使得線性微分方。

E. 傅里葉變換如何應用於實際的物理信號

首先,我們從物理系統的特徵信號角度來解釋。我們知道:大自然中很多現象可以抽象成一個線性時不變系統來研究,無論你用微分方程還是傳遞函數或者狀態空間描述。線性時不變系統可以這樣理解:輸入輸出信號滿足線性關系,而且系統參數不隨時間變換。對於大自然界的很多系統,一個正弦曲線信號輸入後,輸出的仍是正弦曲線,只有幅度和相位可能發生變化,但是頻率和波的形狀仍是一樣的。也就是說正弦信號是系統的特徵向量!當然,指數信號也是系統的特徵向量,表示能量的衰減或積聚。自然界的衰減或者擴散現象大多是指數形式的,或者既有波動又有指數衰減(復指數形式),因此具有特徵的基函數就由三角函數變成復指數函數。但是,如果輸入是方波、三角波或者其他什麼波形,那輸出就不一定是什麼樣子了。所以,除了指數信號和正弦信號以外的其他波形都不是特徵信號。

F. 傅里葉變換是用來做什麼的,具體舉例一下應用

計算機上的聲音和圖像信號、工程上的任何波動信息、數學上的解微分方程、天文學上對遙遠星體的觀測,到處都要用到傅里葉變換。你用手機播放MP3音樂、看圖片、語音識別,這些都是傅里葉變換的日常應用。

本質上講,傅里葉變換,是把一個復雜事物,拆解成一堆標准化的簡單事物的方法。拿聲音舉例,我們知道聲音是物體振動發出的,它是一種波,通過空氣或其他介質進行傳播。

如果用聲波記錄儀記錄並顯示這些波的振動形式,會發現生活中的絕大部分的聲音是都是非常復雜甚至雜亂無章的。

(6)傅立葉分析股票波動擴展閱讀

根據原信號的不同類型,我們可以把傅里葉變換分為四種類別:

1、非周期性連續信號傅里葉變換(Fourier Transform)

2、周期性連續信號傅里葉級數(Fourier Series)

3、非周期性離散信號離散時域傅里葉變換(Discrete Time Fourier Transform)

4、周期性離散信號離散傅里葉變換(Discrete Fourier Transform)

G. 有沒有人可以解釋一下相量域(Phasor domain)和傅里葉級數(Fourier series)

一、什麼是頻域
從我們出生,我們看到的世界都以時間貫穿,股票的走勢、人的身高、汽車的軌跡都會隨著時間發生改變。這種以時間作為參照來觀察動態世界的方法我們稱其為時域分析。而我們也想當然的認為,世間萬物都在隨著時間不停的改變,並且永遠不會靜止下來。但如果我告訴你,用另一種方法來觀察世界的話,你會發現世界是永恆不變的,你會不會覺得我瘋了?我沒有瘋,這個靜止的世界就叫做頻域。
二、傅里葉級數(Fourier Series)的頻譜
還是舉個栗子並且有圖有真相才好理解。
如果我說我能用前面說的正弦曲線波疊加出一個帶 90 度角的矩形波來,你會相信嗎?你不會,就像當年的我一樣。但是看看下圖:

第一幅圖是一個郁悶的正弦波 cos(x)
第二幅圖是 2 個賣萌的正弦波的疊加 cos (x) +a.cos (3x)
第三幅圖是 4 個發春的正弦波的疊加
第四幅圖是 10 個便秘的正弦波的疊加
隨著正弦波數量逐漸的增長,他們最終會疊加成一個標準的矩形,大家從中體會到了什麼道理?(只要努力,彎的都能掰直!)
隨著疊加的遞增,所有正弦波中上升的部分逐漸讓原本緩慢增加的曲線不斷變陡,而所有正弦波中下降的部分又抵消了上升到最高處時繼續上升的部分使其變為水平線。一個矩形就這么疊加而成了。但是要多少個正弦波疊加起來才能形成一個標准 90 度角的矩形波呢?不幸的告訴大家,答案是無窮多個。(上帝:我能讓你們猜著我?)
不僅僅是矩形,你能想到的任何波形都是可以如此方法用正弦波疊加起來的。這是沒有接觸過傅里葉分析的人在直覺上的第一個難點,但是一旦接受了這樣的設定,游戲就開始有意思起來了。
還是上圖的正弦波累加成矩形波,我們換一個角度來看看:

在這幾幅圖中,最前面黑色的線就是所有正弦波疊加而成的總和,也就是越來越接近矩形波的那個圖形。而後面依不同顏色排列而成的正弦波就是組合為矩形波的各個分量。這些正弦波按照頻率從低到高從前向後排列開來,而每一個波的振幅都是不同的。一定有細心的讀者發現了,每兩個正弦波之間都還有一條直線,那並不是分割線,而是振幅為 0 的正弦波!也就是說,為了組成特殊的曲線,有些正弦波成分是不需要的。
這里,不同頻率的正弦波我們成為頻率分量。
好了,關鍵的地方來了!!
如果我們把第一個頻率最低的頻率分量看作「1」,我們就有了構建頻域的最基本單元。對於我們最常見的有理數軸,數字「1」就是有理數軸的基本單元。
(好吧,數學稱法為——基。在那個年代,這個字還沒有其他奇怪的解釋,後面還有正交基這樣的詞彙我會說嗎?)
時域的基本單元就是「1」秒,如果我們將一個角頻率為ω0的正弦波cos(ω0t)看做基礎,那麼頻域的基本單元就是ω0。
有了「1」,還要有「0」才能構成世界,那麼頻域的「0」是什麼呢?cos(0t)就是一個周期無限長的正弦波,也就是一條直線!所以在頻域,0 頻率也被稱為直流分量,在傅里葉級數的疊加中,它僅僅影響全部波形相對於數軸整體向上或是向下而不改變波的形狀。
接下來,讓我們回到初中,回憶一下已經死去的八戒,啊不,已經死去的老師是怎麼定義正弦波的吧。

正弦波就是一個圓周運動在一條直線上的投影。所以頻域的基本單元也可以理解為一個始終在旋轉的圓。
Fourier series square wave circles animation.gif

[Fourier series sawtooth wave circles animation.gif]

介紹完了頻域的基本組成單元,我們就可以看一看一個矩形波,在頻域里的另一個模樣了:

這是什麼奇怪的東西?
這就是矩形波在頻域的樣子,是不是完全認不出來了?教科書一般就給到這里然後留給了讀者無窮的遐想,以及無窮的吐槽,其實教科書只要補一張圖就足夠了:頻域圖像,也就是俗稱的頻譜,就是—
再清楚一點:

可以發現,在頻譜中,偶數項的振幅都是0,也就對應了圖中的彩色直線。振幅為0的正弦波。
Fourier_series_and_transform.gif

老實說,在我學傅里葉變換時,維基的這個圖還沒有出現,那時我就想到了這種表達方法,而且,後面還會加入維基沒有表示出來的另一個譜——相位譜。
但是在講相位譜之前,我們先回顧一下剛剛的這個例子究竟意味著什麼。記得前面說過的那句「世界是靜止的」嗎?估計好多人對這句話都已經吐槽半天了。想像一下,世界上每一個看似混亂的表象,實際都是一條時間軸上不規則的曲線,但實際這些曲線都是由這些無窮無盡的正弦波組成。我們看似不規律的事情反而是規律的正弦波在時域上的投影,而正弦波又是一個旋轉的圓在直線上的投影。那麼你的腦海中會產生一個什麼畫面呢?
我們眼中的世界就像皮影戲的大幕布,幕布的後面有無數的齒輪,大齒輪帶動小齒輪,小齒輪再帶動更小的。在最外面的小齒輪上有一個小人——那就是我們自己。我們只看到這個小人毫無規律的在幕布前表演,卻無法預測他下一步會去哪。而幕布後面的齒輪卻永遠一直那樣不停的旋轉,永不停歇。這樣說來有些宿命論的感覺。說實話,這種對人生的描繪是我一個朋友在我們都是高中生的時候感嘆的,當時想想似懂非懂,直到有一天我學到了傅里葉級數……
三、傅里葉級數(Fourier Series)的相位譜
上一章的關鍵詞是:從側面看。這一章的關鍵詞是:從下面看。
在這一章最開始,我想先回答很多人的一個問題:傅里葉分析究竟是干什麼用的?這段相對比較枯燥,已經知道了的同學可以直接跳到下一個分割線。
先說一個最直接的用途。無論聽廣播還是看電視,我們一定對一個詞不陌生——頻道。頻道頻道,就是頻率的通道,不同的頻道就是將不同的頻率作為一個通道來進行信息傳輸。下面大家嘗試一件事:
先在紙上畫一個sin(x),不一定標准,意思差不多就行。不是很難吧。好,接下去畫一個sin(3x)+sin(5x)的圖形。別說標准不標准了,曲線什麼時候上升什麼時候下降你都不一定畫的對吧?
好,畫不出來不要緊,我把sin(3x)+sin(5x)的曲線給你,但是前提是你不知道這個曲線的方程式,現在需要你把sin(5x)給我從圖里拿出去,看看剩下的是什麼。這基本是不可能做到的。但是在頻域呢?則簡單的很,無非就是幾條豎線而已。
所以很多在時域看似不可能做到的數學操作,在頻域相反很容易。這就是需要傅里葉變換的地方。尤其是從某條曲線中去除一些特定的頻率成分,這在工程上稱為濾波,是信號處理最重要的概念之一,只有在頻域才能輕松的做到。
再說一個更重要,但是稍微復雜一點的用途——求解微分方程。(這段有點難度,看不懂的可以直接跳過這段)微分方程的重要性不用我過多介紹了。各行各業都用的到。但是求解微分方程卻是一件相當麻煩的事情。因為除了要計算加減乘除,還要計算微分積分。而傅里葉變換則可以讓微分和積分在頻域中變為乘法和除法,大學數學瞬間變小學算術有沒有。
傅里葉分析當然還有其他更重要的用途,我們隨著講隨著提。
下面我們繼續說相位譜:
通過時域到頻域的變換,我們得到了一個從側面看的頻譜,但是這個頻譜並沒有包含時域中全部的信息。因為頻譜只代表每一個對應的正弦波的振幅是多少,而沒有提到相位。基礎的正弦波A.sin(wt+θ)中,振幅,頻率,相位缺一不可,不同相位決定了波的位置,所以對於頻域分析,僅僅有頻譜(振幅譜)是不夠的,我們還需要一個相位譜。那麼這個相位譜在哪呢?我們看下圖,這次為了避免圖片太混論,我們用7個波疊加的圖。
於正弦波是周期的,我們需要設定一個用來標記正弦波位置的東西。在圖中就是那些小紅點。小紅點是距離頻率軸最近的波峰,而這個波峰所處的位置離頻率軸有多遠呢?為了看的更清楚,我們將紅色的點投影到下平面,投影點我們用粉色點來表示。當然,這些粉色的點只標注了波峰距離頻率軸的距離,並不是相位。

這里需要糾正一個概念:時間差並不是相位差。如果將全部周期看作2Pi或者360度的話,相位差則是時間差在一個周期中所佔的比例。我們將時間差除周期再乘2Pi,就得到了相位差。
在完整的立體圖中,我們將投影得到的時間差依次除以所在頻率的周期,就得到了最下面的相位譜。所以,頻譜是從側面看,相位譜是從下面看。下次偷看女生裙底被發現的話,可以告訴她:「對不起,我只是想看看你的相位譜。」
注意到,相位譜中的相位除了0,就是Pi。因為cos(t+Pi)=-cos(t),所以實際上相位為Pi的波只是上下翻轉了而已。對於周期方波的傅里葉級數,這樣的相位譜已經是很簡單的了。另外值得注意的是,由於cos(t+2Pi)=cos(t),所以相位差是周期的,pi和3pi,5pi,7pi都是相同的相位。人為定義相位譜的值域為(-pi,pi],所以圖中的相位差均為Pi。
最後來一張大集合:
四、傅里葉變換(Fourier Tranformation)
傅里葉變換實際上是對一個周期無限大的函數進行傅里葉變換。
所以說,鋼琴譜其實並非一個連續的頻譜,而是很多在時間上離散的頻率,但是這樣的一個貼切的比喻真的是很難找出第二個來了。
因此在傅里葉變換在頻域上就從離散譜變成了連續譜。那麼連續譜是什麼樣子呢?
你見過大海么?
為了方便大家對比,我們這次從另一個角度來看頻譜,還是傅里葉級數中用到最多的那幅圖,我們從頻率較高的方向
以上是離散譜,么連續譜是什麼樣子呢?
盡情的發揮你的想像,想像這些離散的正弦波離得越來越近,逐漸變得連續……
直到變得像波濤起伏的大海:
很抱歉,為了能讓這些波浪更清晰的看到,我沒有選用正確的計算參數,而是選擇了一些讓圖片更美觀的參數,不然這圖看起來就像屎一樣了。
不過通過這樣兩幅圖去比較,大家應該可以理解如何從離散譜變成了連續譜的了吧?原來離散譜的疊加,變成了連續譜的累積。所以在計算上也從求和符號變成了積分符號。
不過,這個故事還沒有講完,接下去,我保證讓你看到一幅比上圖更美麗壯觀的圖片,但是這里需要介紹到一個數學工具才能然故事繼續,這個工具就是——
五、宇宙耍帥第一公式:歐拉公式
虛數i這個概念大家在高中就接觸過,但那時我們只知道它是-1 的平方根,可是它真正的意義是什麼呢?
這里有一條數軸,在數軸上有一個紅色的線段,它的長度是1。當它乘以 3 的時候,它的長度發生了變化,變成了藍色的線段,而當它乘以-1 的時候,就變成了綠色的線段,或者說線段在數軸上圍繞原點旋轉了 180 度。
我們知道乘-1 其實就是乘了兩次 i 使線段旋轉了 180 度,那麼乘一次 i 呢——答案很簡單——旋轉了 90 度。
同時,我們獲得了一個垂直的虛數軸。實數軸與虛數軸共同構成了一個復數的平面,也稱復平面。這樣我們就了解到,乘虛數i的一個功能——旋轉。
現在,就有請宇宙第一耍帥公式歐拉公式隆重登場——
這個公式在數學領域的意義要遠大於傅里葉分析,但是乘它為宇宙第一耍帥公式是因為它的特殊形式——當x等於 Pi 的時候。
經常有理工科的學生為了跟妹子表現自己的學術功底,用這個公式來給妹子解釋數學之美:」石榴姐你看,這個公式里既有自然底數e,自然數 1 和0,虛數i還有圓周率 pi,它是這么簡潔,這么美麗啊!「但是姑娘們心裡往往只有一句話:」臭屌絲……「
這個公式關鍵的作用,是將正弦波統一成了簡單的指數形式。我們來看看圖像上的涵義:
歐拉公式所描繪的,是一個隨著時間變化,在復平面上做圓周運動的點,隨著時間的改變,在時間軸上就成了一條螺旋線。如果只看它的實數部分,也就是螺旋線在左側的投影,就是一個最基礎的餘弦函數。而右側的投影則是一個正弦函數。
關於復數更深的理解,大家可以參考:
復數的物理意義是什麼?
這里不需要講的太復雜,足夠讓大家理解後面的內容就可以了。
六、指數形式的傅里葉變換
有了歐拉公式的幫助,我們便知道:正弦波的疊加,也可以理解為螺旋線的疊加在實數空間的投影。而螺旋線的疊加如果用一個形象的栗子來理解是什麼呢?
光波
高中時我們就學過,自然光是由不同顏色的光疊加而成的,而最著名的實驗就是牛頓師傅的三棱鏡實驗:
所以其實我們在很早就接觸到了光的頻譜,只是並沒有了解頻譜更重要的意義。
但不同的是,傅里葉變換出來的頻譜不僅僅是可見光這樣頻率范圍有限的疊加,而是頻率從 0 到無窮所有頻率的組合。
這里,我們可以用兩種方法來理解正弦波:
第一種前面已經講過了,就是螺旋線在實軸的投影。
另一種需要藉助歐拉公式的另一種形式去理解:
將以上兩式相加再除2,得到:
這個式子可以怎麼理解呢?
我們剛才講過,e^(it)可以理解為一條逆時針旋轉的螺旋線,那麼 e^(-it)則可以理解為一條順時針旋轉的螺旋線。而 cos (t)則是這兩條旋轉方向不同的螺旋線疊加的一半,因為這兩條螺旋線的虛數部分相互抵消掉了!
舉個例子的話,就是極化方向不同的兩束光波,磁場抵消,電場加倍。
這里,逆時針旋轉的我們稱為正頻率,而順時針旋轉的我們稱為負頻率(注意不是復頻率)。
好了,剛才我們已經看到了大海——連續的傅里葉變換頻譜,現在想一想,連續的螺旋線會是什麼樣子:
想像一下再往下翻:
是不是很漂亮?

你猜猜,這個圖形在時域是什麼樣子?
哈哈,是不是覺得被狠狠扇了一個耳光。數學就是這么一個把簡單的問題搞得很復雜的東西。
順便說一句,那個像大海螺一樣的圖,為了方便觀看,我僅僅展示了其中正頻率的部分,負頻率的部分沒有顯示出來。
如果你認真去看,海螺圖上的每一條螺旋線都是可以清楚的看到的,每一條螺旋線都有著不同的振幅(旋轉半徑),頻率(旋轉周期)以及相位。而將所有螺旋線連成平面,就是這幅海螺圖了。
好了,講到這里,相信大家對傅里葉變換以及傅里葉級數都有了一個形象的理解了,我們最後用一張圖來總結一下:

好了,傅里葉的故事終於講完了,下面來講講我的故事:
這篇文章第一次被卸下來的地方你們絕對猜不到在哪,是在一張高數考試的卷子上。當時為了刷分,我重修了高數(上),但是後來時間緊壓根沒復習,所以我就抱著裸考的心態去了考場。但是到了考場我突然意識到,無論如何我都不會比上次考的更好了,所以乾脆寫一些自己對於數學的想法吧。於是用了一個小時左右的時間在試卷上洋洋灑灑寫了本文的第一草稿。
你們猜我的了多少分?
6 分
沒錯,就是這個數字。而這 6 分的成績是因為最後我實在無聊,把選擇題全部填上了C,應該是中了兩道,得到了這寶貴的 6 分。說真的,我很希望那張卷子還在,但是應該不太可能了。
那麼你們猜猜我第一次信號與系統考了多少分呢?
45 分
沒錯,剛剛夠參加補考的。但是我心一橫沒去考,決定重修。因為那個學期在忙其他事情,學習真的就拋在腦後了。但是我知道這是一門很重要的課,無論如何我要吃透它。說真的,信號與系統這門課幾乎是大部分工科課程的基礎,尤其是通信專業。
在重修的過程中,我仔細分析了每一個公式,試圖給這個公式以一個直觀的理解。雖然我知道對於研究數學的人來說,這樣的學習方法完全沒有前途可言,因為隨著概念愈加抽象,維度越來越高,這種圖像或者模型理解法將完全喪失作用。但是對於一個工科生來說,足夠了。
後來來了德國,這邊學校要求我重修信號與系統時,我徹底無語了。但是沒辦法,德國人有時對中國人就是有種藐視,覺得你的教育不靠譜。所以沒辦法,再來一遍吧。
這次,我考了滿分,而及格率只有一半。
老實說,數學工具對於工科生和對於理科生來說,意義是完全不同的。工科生只要理解了,會用,會查,就足夠了。但是很多高校卻將這些重要的數學課程教給數學系的老師去教。這樣就出現一個問題,數學老師講得天花亂墜,又是推理又是證明,但是學生心裡就只有一句話:學這貨到底幹嘛用的?
缺少了目標的教育是徹底的失敗。
在開始學習一門數學工具的時候,學生完全不知道這個工具的作用,現實涵義。而教材上有隻有晦澀難懂,定語就二十幾個字的概念以及看了就眼暈的公式。能學出興趣來就怪了!
好在我很幸運,遇到了大連海事大學的吳楠老師。他的課全程來看是兩條線索,一條從上而下,一條從下而上。先將本門課程的意義,然後指出這門課程中會遇到哪樣的問題,讓學生知道自己學習的某種知識在現實中扮演的角色。然後再從基礎講起,梳理知識樹,直到延伸到另一條線索中提出的問題,完美的銜接在一起!
這樣的教學模式,我想才是大學里應該出現的。
最後,寫給所有給我點贊並留言的同學。真的謝謝大家的支持,也很抱歉不能一一回復。因為知乎專欄的留言要逐次載入,為了看到最後一條要點很多次載入。當然我都堅持看完了,只是沒辦法一一回復。
本文只是介紹了一種對傅里葉分析新穎的理解方法,對於求學,還是要踏踏實實弄清楚公式和概念,學習,真的沒有捷徑。但至少通過本文,我希望可以讓這條漫長的路變得有意思一些。
最後,祝大家都能在學習中找到樂趣…

H. 求用傅里葉變換分析股票價格周期的matlab程序

這個有周期?

I. 如果電網頻率在波動,對用傅里葉進行分析時會有什麼影響

【1】損壞設備。對火力發電廠,由於使汽輪機葉片接近共振狀態,會造成葉片損壞事故;對用電單位,則可能使電動機轉速降低,而引起設備損壞。
【2】電網頻率:電力系統頻率是指電力系統統一的一種運行參數,國家標准GB/T15945—1995《電力系統頻率允許偏差》規定以50Hz正弦波作為我國電力系統的標准頻率(工頻),並規定電力系統正常的頻率標准為50Hz±0.2Hz。

J. 傅里葉變換的相關

傅里葉是一位法國數學家和物理學家的名字,英語原名是Jean Baptiste Joseph Fourier(1768-1830), Fourier對熱傳遞很感興趣,於1807年在法國科學學會上發表了一篇論文,運用正弦曲線來描述溫度分布,論文里有個在當時具有爭議性的決斷:任何連續周期信號可以由一組適當的正弦曲線組合而成。當時審查這個論文的人,其中有兩位是歷史上著名的數學家拉格朗日(Joseph Louis Lagrange, 1736-1813)和拉普拉斯(Pierre Simon de Laplace, 1749-1827),當拉普拉斯和其它審查者投票通過並要發表這個論文時,拉格朗日堅決反對,在他此後生命的六年中,拉格朗日堅持認為傅里葉的方法無法表示帶有稜角的信號,如在方波中出現非連續變化斜率。法國科學學會屈服於拉格朗日的威望,拒絕了傅里葉的工作,幸運的是,傅里葉還有其它事情可忙,他參加了政治運動,隨拿破崙遠征埃及,法國大革命後因會被推上斷頭台而一直在逃避。直到拉格朗日死後15年這個論文才被發表出來。
拉格朗日是對的:正弦曲線無法組合成一個帶有稜角的信號。但是,我們可以用正弦曲線來非常逼近地表示它,逼近到兩種表示方法不存在能量差別,基於此,傅里葉是對的。
用正弦曲線來代替原來的曲線而不用方波或三角波來表示的原因在於,分解信號的方法是無窮的,但分解信號的目的是為了更加簡單地處理原來的信號。用正餘弦來表示原信號會更加簡單,因為正餘弦擁有原信號所不具有的性質:正弦曲線保真度。一個正弦曲線信號輸入後,輸出的仍是正弦曲線,只有幅度和相位可能發生變化,但是頻率和波的形狀仍是一樣的。且只有正弦曲線才擁有這樣的性質,正因如此我們才不用方波或三角波來表示。
為什麼偏偏選擇三角函數而不用其他函數進行分解?我們從物理系統的特徵信號角度來解釋。我們知道:大自然中很多現象可以抽象成一個線性時不變系統來研究,無論你用微分方程還是傳遞函數或者狀態空間描述。線性時不變系統可以這樣理解:輸入輸出信號滿足線性關系,而且系統參數不隨時間變換。對於大自然界的很多系統,一個正弦曲線信號輸入後,輸出的仍是正弦曲線,只有幅度和相位可能發生變化,但是頻率和波的形狀仍是一樣的。也就是說正弦信號是系統的特徵向量!當然,指數信號也是系統的特徵向量,表示能量的衰減或積聚。自然界的衰減或者擴散現象大多是指數形式的,或者既有波動又有指數衰減(復指數 形式),因此具有特徵的基函數就由三角函數變成復指數函數。但是,如果輸入是方波、三角波或者其他什麼波形,那輸出就不一定是什麼樣子了。所以,除了指數信號和正弦信號以外的其他波形都不是線性系統的特徵信號。

用正弦曲線來代替原來的曲線而不用方波或三角波或者其他什麼函數來表示的原因在於:正弦信號恰好是很多線性時不變系統的特徵向量。於是就有了傅里葉變換。對於更一般的線性時不變系統,復指數信號(表示耗散或衰減)是系統的「特徵向量」。於是就有了拉普拉斯變換。z變換也是同樣的道理,這時是離散系統的「特徵向量」。這里沒有區分特徵函數和特徵向量的概念,主要想表達二者的思想是相同的,只不過一個是有限維向量,一個是無限維函數。
傅里葉級數和傅里葉變換其實就是我們之前討論的特徵值與特徵向量的問題。分解信號的方法是無窮的,但分解信號的目的是為了更加簡單地處理原來的信號。這樣,用正餘弦來表示原信號會更加簡單,因為正餘弦擁有原信號所不具有的性質:正弦曲線保真度。且只有正弦曲線才擁有這樣的性質。
這也解釋了為什麼我們一碰到信號就想方設法的把它表示成正弦量或者復指數量的形式;為什麼方波或者三角波如此「簡單」,我們非要展開的如此「麻煩」;為什麼對於一個沒有什麼規律的「非周期」信號,我們都絞盡腦汁的用正弦量展開。就因為正弦量(或復指數)是特徵向量。 什麼是時域?從我們出生,我們看到的世界都以時間貫穿,股票的走勢、人的身高、汽車的軌跡都會隨著時間發生改變。這種以時間作為參照來觀察動態世界的方法我們稱其為時域分析。而我們也想當然的認為,世間萬物都在隨著時間不停的改變,並且永遠不會靜止下來。
什麼是頻域?頻域(frequency domain)是描述信號在頻率方面特性時用到的一種坐標系。用線性代數的語言就是裝著正弦函數的空間。頻域最重要的性質是:它不是真實的,而是一個數學構造。頻域是一個遵循特定規則的數學范疇。正弦波是頻域中唯一存在的波形,這是頻域中最重要的規則,即正弦波是對頻域的描述,因為時域中的任何波形都可用正弦波合成。
對於一個信號來說,信號強度隨時間的變化規律就是時域特性,信號是由哪些單一頻率的信號合成的就是頻域特性。
時域分析與頻域分析是對信號的兩個觀察面。時域分析是以時間軸為坐標表示動態信號的關系;頻域分析是把信號變為以頻率軸為坐標表示出來。一般來說,時域的表示較為形象與直觀,頻域分析則更為簡練,剖析問題更為深刻和方便。目前,信號分析的趨勢是從時域向頻域發展。然而,它們是互相聯系,缺一不可,相輔相成的。貫穿時域與頻域的方法之一,就是傳說中的傅里葉分析。傅里葉分析可分為傅里葉級數(Fourier Serie)和傅里葉變換(Fourier Transformation)。 根據原信號的不同類型,我們可以把傅里葉變換分為四種類別:
1非周期性連續信號傅里葉變換(Fourier Transform)
2周期性連續信號傅里葉級數(Fourier Series)
3非周期性離散信號離散時域傅里葉變換(Discrete Time Fourier Transform)
4周期性離散信號離散傅里葉變換(Discrete Fourier Transform)
下圖是四種原信號圖例:

這四種傅里葉變換都是針對正無窮大和負無窮大的信號,即信號的的長度是無窮大的,我們知道這對於計算機處理來說是不可能的,那麼有沒有針對長度有限的傅里葉變換呢?沒有。因為正餘弦波被定義成從負無窮大到正無窮大,我們無法把一個長度無限的信號組合成長度有限的信號。面對這種困難,方法是把長度有限的信號表示成長度無限的信號,可以把信號無限地從左右進行延伸,延伸的部分用零來表示,這樣,這個信號就可以被看成是非周期性離解信號,我們就可以用到離散時域傅里葉變換的方法。還有,也可以把信號用復制的方法進行延伸,這樣信號就變成了周期性離散信號,這時我們就可以用離散傅里葉變換方法進行變換。這里我們要學的是離散信號,對於連續信號我們不作討論,因為計算機只能處理離散的數值信號,我們的最終目的是運用計算機來處理信號的。
但是對於非周期性的信號,我們需要用無窮多不同頻率的正弦曲線來表示,這對於計算機來說是不可能實現的。所以對於離散信號的變換只有離散傅里葉變換(DFT)才能被適用,對於計算機來說只有離散的和有限長度的數據才能被處理,對於其它的變換類型只有在數學演算中才能用到,在計算機面前我們只能用DFT方法,後面我們要理解的也正是DFT方法。這里要理解的是我們使用周期性的信號目的是為了能夠用數學方法來解決問題,至於考慮周期性信號是從哪裡得到或怎樣得到是無意義的。
每種傅里葉變換都分成實數和復數兩種方法,對於實數方法是最好理解的,但是復數方法就相對復雜許多了,需要懂得有關復數的理論知識,不過,如果理解了實數離散傅里葉變換(real DFT),再去理解復數傅里葉就更容易了,所以我們先把復數的傅里葉放到一邊去,先來理解實數傅里葉變換,在後面我們會先講講關於復數的基本理論,然後在理解了實數傅里葉變換的基礎上再來理解復數傅里葉變換。
如 上圖所示,實信號四種變換在時域和頻域的表現形式。
還有,這里我們所要說的變換(transform)雖然是數學意義上的變換,但跟函數變換是不同的,函數變換是符合一一映射准則的,對於離散數字信號處理(DSP),有許多的變換:傅里葉變換、拉普拉斯變換、Z變換、希爾伯特變換、離散餘弦變換等,這些都擴展了函數變換的定義,允許輸入和輸出有多種的值,簡單地說變換就是把一堆的數據變成另一堆的數據的方法。 傅里葉變換是數字信號處理領域一種很重要的演算法。要知道傅里葉變換演算法的意義,首先要了解傅里葉原理的意義。傅里葉原理表明:任何連續測量的時序或信號,都可以表示為不同頻率的正弦波信號的無限疊加。而根據該原理創立的傅里葉變換演算法利用直接測量到的原始信號,以累加方式來計算該信號中不同正弦波信號的頻率、振幅和相位。
和傅里葉變換演算法對應的是反傅里葉變換演算法。該反變換從本質上說也是一種累加處理,這樣就可以將單獨改變的正弦波信號轉換成一個信號。因此,可以說,傅里葉變換將原來難以處理的時域信號轉換成了易於分析的頻域信號(信號的頻譜),可以利用一些工具對這些頻域信號進行處理、加工。最後還可以利用傅里葉反變換將這些頻域信號轉換成時域信號。
從現代數學的眼光來看,傅里葉變換是一種特殊的積分變換。它能將滿足一定條件的某個函數表示成正弦基函數的線性組合或者積分。在不同的研究領域,傅里葉變換具有多種不同的變體形式,如連續傅里葉變換和離散傅里葉變換。
在數學領域,盡管最初傅里葉分析是作為熱過程的解析分析的工具,但是其思想方法仍然具有典型的還原論和分析主義的特徵。"任意"的函數通過一定的分解,都能夠表示為正弦函數的線性組合的形式,而正弦函數在物理上是被充分研究而相對簡單的函數類:1. 傅里葉變換是線性運算元,若賦予適當的范數,它還是酉運算元;2. 傅里葉變換的逆變換容易求出,而且形式與正變換非常類似;3. 正弦基函數是微分運算的本徵函數,從而使得線性微分方程的求解可以轉化為常系數的代數方程的求解.在線性時不變雜的卷積運算為簡單的乘積運算,從而提供了計算卷積的一種簡單手段;4. 離散形式的傅里葉的物理系統內,頻率是個不變的性質,從而系統對於復雜激勵的響應可以通過組合其對不同頻率正弦信號的響應來獲取;5. 著名的卷積定理指出:傅里葉變換可以化復變換可以利用數字計算機快速的算出(其演算法稱為快速傅里葉變換演算法(FFT))。
正是由於上述的良好性質,傅里葉變換在物理學、數論、組合數學、信號處理、概率、統計、密碼學、聲學、光學等領域都有著廣泛的應用。
圖像傅里葉變換
圖像的頻率是表徵圖像中灰度變化劇烈程度的指標,是灰度在平面空間上的梯度。如:大面積的沙漠在圖像中是一片灰度變化緩慢的區域,對應的頻率值很低;而對於地表屬性變換劇烈的邊緣區域在圖像中是一片灰度變化劇烈的區域,對應的頻率值較高。傅里葉變換在實際中有非常明顯的物理意義,設f是一個能量有限的模擬信號,則其傅里葉變換就表示f的譜。從純粹的數學意義上看,傅里葉變換是將一個函數轉換為一系列周期函數來處理的。從物理效果看,傅里葉變換是將圖像從空間域轉換到頻率域,其逆變換是將圖像從頻率域轉換到空間域。換句話說,傅里葉變換的物理意義是將圖像的灰度分布函數變換為圖像的頻率分布函數,傅里葉逆變換是將圖像的頻率分布函數變換為灰度分布函數。
傅里葉變換以前,圖像(未壓縮的點陣圖)是由對在連續空間(現實空間)上的采樣得到一系列點的集合,我們習慣用一個二維矩陣表示空間上各點,則圖像可由z=f(x,y)來表示。由於空間是三維的,圖像是二維的,因此空間中物體在另一個維度上的關系就由梯度來表示,這樣我們可以通過觀察圖像得知物體在三維空間中的對應關系。為什麼要提梯度?因為實際上對圖像進行二維傅里葉變換得到頻譜圖,就是圖像梯度的分布圖,當然頻譜圖上的各點與圖像上各點並不存在一一對應的關系,即使在不移頻的情況下也是沒有。傅里葉頻譜圖上我們看到的明暗不一的亮點,實際上圖像上某一點與鄰域點差異的強弱,即梯度的大小,也即該點的頻率的大小(可以這么理解,圖像中的低頻部分指低梯度的點,高頻部分相反)。一般來講,梯度大則該點的亮度強,否則該點亮度弱。這樣通過觀察傅里葉變換後的頻譜圖,也叫功率圖,我們首先就可以看出,圖像的能量分布,如果頻譜圖中暗的點數更多,那麼實際圖像是比較柔和的(因為各點與鄰域差異都不大,梯度相對較小),反之,如果頻譜圖中亮的點數多,那麼實際圖像一定是尖銳的,邊界分明且邊界兩邊像素差異較大的。對頻譜移頻到原點以後,可以看出圖像的頻率分布是以原點為圓心,對稱分布的。將頻譜移頻到圓心除了可以清晰地看出圖像頻率分布以外,還有一個好處,它可以分離出有周期性規律的干擾信號,比如正弦干擾,一副帶有正弦干擾,移頻到原點的頻譜圖上可以看出除了中心以外還存在以某一點為中心,對稱分布的亮點集合,這個集合就是干擾噪音產生的,這時可以很直觀的通過在該位置放置帶阻濾波器消除干擾。
另外說明以下幾點:
1、圖像經過二維傅里葉變換後,其變換系數矩陣表明:
若變換矩陣Fn原點設在中心,其頻譜能量集中分布在變換系數短陣的中心附近(圖中陰影區)。若所用的二維傅里葉變換矩陣Fn的原點設在左上角,那麼圖像信號能量將集中在系數矩陣的四個角上。這是由二維傅里葉變換本身性質決定的。同時也表明一股圖像能量集中低頻區域。
2 、變換之後的圖像在原點平移之前四角是低頻,最亮,平移之後中間部分是低頻,最亮,亮度大說明低頻的能量大(幅角比較大)。 將其發展延伸,構造出了其他形式的積分變換:
從數學的角度理解積分變換就是通過積分運算,把一個函數變成另一個函數。也可以理解成是算內積,然後就變成一個函數向另一個函數的投影:

K(s,t)積分變換的核(Kernel)。當選取不同的積分域和變換核時,就得到不同名稱的積分變換。學術一點的說法是:向核空間投影,將原問題轉化到核空間。所謂核空間,就是這個空間裡面裝的是核函數。下表列出常見的變換及其核函數:
當然,選取什麼樣的核主要看你面對的問題有什麼特徵。不同問題的特徵不同,就會對應特定的核函數。把核函數作為基函數。將現在的坐標投影到核空間裡面去,問題就會得到簡化。之所以叫核,是因為這是最核心的地方。為什麼其他變換你都沒怎麼聽說過而只熟悉傅里葉變換和拉普拉斯變換呢?因為復指數信號才是描述這個世界的特徵函數!

熱點內容
誰有可以看的電影網址 發布:2024-05-06 03:56:15 瀏覽:333
周弘所有激情 發布:2024-05-06 03:49:04 瀏覽:606
股票底部漲停板啥意思 發布:2024-05-06 03:47:08 瀏覽:394
阿里市盈率是多少合適 發布:2024-05-06 03:46:18 瀏覽:372
外匯跟股票看多長時間的指標 發布:2024-05-06 03:35:01 瀏覽:727
有關床戲韓國電影 發布:2024-05-06 03:34:37 瀏覽:12
肉牛大縣探牛市 發布:2024-05-06 03:11:18 瀏覽:924
超能查派2多久上映 發布:2024-05-06 03:01:27 瀏覽:343
國有股本比例是什麼意思 發布:2024-05-06 02:58:40 瀏覽:257
查看行業歷史市盈率 發布:2024-05-06 02:58:27 瀏覽:604